Частоты музыкальных нот герц

Частоты настройки фортепиано

Частоты настройки фортепиано опираются на эталонную частоту ноты ля первой октавы — 440 Гц.

В стандартном фортепиано с 88 клавишами октава разделена на 12 полутонов по логарифмической шкале. В каждой следующей октаве частота соответствующего основного тона вдвое выше: ля первой октавы — 440 Гц, ля второй октавы — 880 Гц, ля третьей октавы — 1760 Гц и т. д. (подробнее см. статью Настройка фортепиано).

Содержание

[править] Примечание

Эти частоты соответствуют теоретически идеальному строю фортепиано, предполагающему, что для любой ноты все её высшие гармоники характеризуются частотами [math]n\cdot f[/math] , где [math]f[/math] — частота основного тона, а [math]n[/math] — целое число большее единицы.

Однако, в реальном инструменте высшие гармоники основной частоты всегда немного выше, причём чем выше гармоника, тем больше девиация (отклонение). Например, вторая гармоника к ля первой октавы — основной тон строго 440 Гц — может составлять около 880,4 Гц (вместо 880), четвёртая — 1761,2 Гц (а не 1760), восьмая — 3522,5 Гц (а не 3520). Этот эффект в зарубежных источниках называют негармоничностью (inarmonía или inharmonicity); зависит он от жёсткости струны: чем она жёстче, тем сильнее эффект. Поэтому для разных инструментов и разного набора струн эффект будет проявляться в разной степени.

Негармоничность приводит к тому, что при практической настройке фортепиано по биениям на слух получается «расширенный» строй, то есть несколько «расходящийся» к краям клавиатуры по частоте. Если же осуществить настройку на стандартные теоретические частоты, то будет ощущаться некоторая нечистота звучания.

Источник

Математика музыкального строя — основы.

Для понимания потребуется базовое знакомство с нотами и интервалами. В поcте много цифр, но вам считать ничего не придётся, достаточно понимать, что происходит.

Читайте также:  Ноты для фортепиано этюды скрябина

Любую музыкальную ноту можно выразить цифрой — частотой колебания в герцах. А интервал между двумя нотами — соотношением двух частот. Например, нота на октаву выше данной всегда имеет частоту в 2 раза больше. Поэтому октава — это соотношение 2:1 или множитель 2.

Когда я буду говорить «интервал между двумя нотами равен 5:4», я буду иметь в виду, что частота более высокой ноты в 5:4 (или 1,25) раз выше, чем частота нижней ноты.

Имеет значение именно соотношение («во сколько раз выше»), а не разница частот («на сколько герц больше»). Например, между 100 и 200 Гц такой же интервал, как между 300 и 600 Гц, — октава (2:1).

Чтобы сложить два интервала, мы перемножаем их соотношения. «На октаву выше» значит «в 2 раза выше по частоте», поэтому на две октавы выше — в 4 раза выше, на три октавы — в 8 раз выше, и так далее.

Интервалы, которые выражаются простым соотношением (то есть дробью, у которой и числитель и знаменатель — небольшие целые числа), называются чистыми интервалами.

Основные чистые интервалы:

2:1 — октава
3:2 — квинта
4:3 — кварта
5:4 — большая терция
6:5 — малая терция.

Если интервал между нотами чистый, то эти ноты очень хорошо «сливаются» вместе. Музыканты издавна стремились к таким созвучиям.

Этому есть физическое объяснение. Любая нота состоит из гармоник — колебаний, кратных друг другу по частоте. Если соотношение между нотами простое, то часть гармоник у этих двух нот будут совпадать и полностью сливаться друг с другом.

Например, возьмём ноту с частотой 300 Гц и ноту на октаву выше (300*2=600 Гц) и выделим у них общие гармоники:
300, 600, 900, 1200, 1500, 1800, 2100, 2400.
600, 1200, 1800, 2400.

Теперь возьмём ноту с частотой 300 Гц и ноту на чистую квинту выше:
300, 600, 900, 1200, 1500, 1800, 2100, 2400, 2700.
450, 900, 1350, 1800, 2250, 2700.

На спектрограмме эти совпадающие гармоники хорошо видно (для сравнения я взял негармоничную пару — 300 и 520 Гц):

Кроме того, гармоники любой отдельной ноты содержат в себе чистые интервалы. Например, третья гармоника любой ноты в 3 /2 раза выше по частоте, чем вторая гармоника этой же ноты. Так что чистые интервалы происходят из базовых физических свойств звука.

Самый простой из чистых интервалов — это октава: 2 /1. Она обладает важным свойством — если взять две ноты с разницей в октаву, то ВСЕ гармоники верхней ноты будут совпадать с чётными гармониками нижней (пример — в предыдущей сноске). Такие ноты максимально «сливаются» вместе и воспринимаются как одна. Поэтому они и назваются одинаково (До и следующая До). Сравните одну и ту же мелодию сыгранную большими терциями, квинтами и октавами, и всё станет понятно:

В посте я буду говорить про разные квинты, терции, и т.д. Но величина октавы будет всегда одна — 2 /1.

Когда одновременно звучат колебания близкой частоты (например, 200 и 202 Гц), между ними возникают так называемые биения — звук «плавает» или «дрожит» оттого что колебания медленно сдвигаются по фазе относительно друг друга.

Поэтому если интервал между двумя нотами не совсем чистый, но близок к чистому, то биения возникнут между некоторыми гармониками этих нот. Для примера — квинта, которая немного больше чистой:

200, 400, 600 , 800, 1000, 1200 .
302, 604 , 906, 1208 .

Чем сильнее интервал отклоняется от чистого, тем чаще биения и тем «нестабильнее» он звучит.

Ещё интервалы измеряют в центах. Цент — это очень маленький интервал: 1,0005777895. (корень 1200-й степени из 2х). Это одна сотая современного полутона. Он понадобится, чтобы оценить мелкие различия между интервалами.

Вот пример, который поможет ощутить масштабы цента:

Последнее примечание: из интервалов я буду говорить только о секундах, терциях и квинтах, потому что интервалы, которые являются обращениями друг друга, ведут себя совершенно аналогично. Например, если в каком-то строю терция C-E получается немного больше, чем чистая терция, то секста E-C — ровно настолько же меньше. И так далее: с квартами дела обстоят так же, как с квинтами, а с септимами — так же, как с секундами.

Если посмотреть на таблицу частот разных нот, видно, что чистых интервалов там практически нет. Между нотами A3 и A4 одна октава разницы (220 Гц * 2=440 Гц). А, скажем, нота E4, которая на квинту выше A3, имеет частоту не 330 Гц (220 Гц * 3 /2), а немного меньше.

Всё дело в том, что с чистыми интервалами есть проблема: они в очень многих случаях НЕ СХОДЯТСЯ друг с другом.

Например, возьмём ноту До (C), прибавим к ней две октавы и одну большую терцию. То есть два раза удвоим частоту, а потом умножим на 5 /4.

Получилась нота Ми (E) через две октавы.

Теперь отложим от той же самой До четыре квинты вверх. То есть, четыре раза умножим частоту на 3 /2. Получилась та же самая нота Ми.

Или не та же самая?

В первом случае частота Ми ровно в 5 раз выше, чем До: 2*2* 5 /4=5.
А во втором — в 81 /16 раз выше ( 3 /2* 3 /2* 3 /2* 3 /2= 81 /16). То есть в 5,0625 раз выше.

Получается, что две октавы плюс чистая большая терция не равны четырём чистым квинтам, из-за чего невозможно определить правильную частоту Ми относительно До. И таких расхождений много 1 .

Ещё пример: простая мелодия, которая начинается с До и движется так: квинта вверх, кварта вниз, квинта вверх, кварта вниз, большая терция вниз — вернулись в ту же До.

НО! Если все эти интервалы чистые, то До в конце мелодии получается выше, чем До, которая была в начале! А именно — в 81 /80 раз выше: 3 /2* 3 /4* 3 /2* 3 /4* 4 /5= 81 /80, и не равно 1. Повторим эту мелодию ещё раз, начав с новой До — и До станет выше почти на полтона. Вот, послушайте (в конце я для наглядности повторяю изначальную До):

Чтобы этого сдвига не происходило, придётся, например, пожертвовать чистотой большой терции и немного её увеличить.

А вот здесь, с 4:15, очень наглядно показывают этот сдвиг на примере аккордов.

Из всего этого ясно, что для построения нотной системы неизбежно придётся идти на какие-то компромиссы. Например, чтобы в предпоследнем примере получались не разные Ми, а одинаковые, придётся либо сделать квинту немного меньше, чем 3 /2, либо сделать большую терцию немного больше, чем 5 /4, либо сделать понемножку и то и другое. Именно это и происходило, когда музыканты пытались найти компромисс. В одни исторические периоды предпочтение отдавали чистой квинте, в другие — чистой терции.

Вот теперь можно рассказать про несколько исторических строёв.

Начнём с того, что строй этот создал не Пифагор. Насколько я понимаю, строй оформился в период поздней античности, а название получил потому что был основан на идеях пифагорейцев, которым очень нравилась идея гармонии чисел.

Пифагоров строй — это звукоряд, построенный на двух самых простых соотношениях — октаве и чистой квинте. Берём основную ноту, откладываем от неё вверх и вниз цепочку квинт и таким образом находим частоты для всех остальных нот.

Начнём, например, с До. Прибавим к ней чистую квинту и получим Соль, частота которой в 3 /2 раза выше До. Прибавим к этой Соль чистую квинту — получим Ре, частота которой в 3 /2 выше, чем у Соль, и в 9 /4 раз выше, чем у исходной До ( 3 /2* 3 /2). Дальше — Ля, с частотой в 27 /8 выше исходной До, и так далее.

В обратную сторону от До тоже можно откладывать квинты. Получится Фа, с множителем 2 /3, Си-бемоль с множителем 4 /9, и так далее.

На верхней клавиатуре изображены несколько первых шагов процесса:

На нижней клавиатуре полученные ноты собраны в одну октаву с До. Например, Ре ( 9 /4), которая получилась из двух квинт, мы понизили на октаву (=поделили на 2), и получилась Ре, которая на тон выше исходной До: 9 /8. Ля тоже понизим на октаву — получится 27 /16. Ми понизим на две октавы, Фа повысим на октаву, и так далее.

Если начать с Ре и отложить от неё по три квинты в обе стороны, получится 7 нот (F-C-G-D-A-E-B), составляющих До-мажор. Переместим их в одну октаву и получим такие соотношения:

Нота C D E F G A B C
Соотношение с первой С 1 /1 9 /8 81 /64 4 /3 3 /2 27 /16 243 /128 2 /1
Соотношение между соседними нотами 9 /8 9 /8 256 /243 9 /8 9 /8 9 /8 256 /243

Если продолжить процесс дальше и отложить от Ре по шесть квинт в обе стороны, то получится такой ряд нот:

Нота Соотношение с D
Ab 1024 /729
Eb 256 /243
Bb 128 /81
F 32 /27
C 16 /9
G 4 /3
D 1
A 3 /2
E 9 /8
B 27 /16
F# 81 /64
C# 243 /128
G# 729 /512

Получилось 13 нот, причём ноты Ab и G# получились разными: соотношение 1024 /729 близко, но не равно 729 /512 (1,40466. 128 /1. А 12 чистых квинт — это 531441 /4096, то есть 129,746.

Наша пифагорова G# ровно на 12 квинт выше, чем Ab, поэтому когда мы их приводим в одну октаву, получается не одна нота а две близких.

Разница между ними называется Пифагоровой коммой. Это небольшой интервал, примерно 23,46 цента, то есть чуть меньше четверти нынешнего полутона.

Нам нужно 12 нот, поэтому отбросим Ab и оставим G#.

Можно, конечно, ввести в наш строй обе ноты — Ab и G#, но это во-первых, непрактично на многих инструментах 2 , а во вторых, не решит проблему полностью. Например, мы не сможем сыграть чистую квинту от G#, потому что ноты D# у нас нет, а если играть вместо неё Eb, квинта будет не чистая, а опять же уменьшенная на пифагорову комму.

А если продолжать добавлять ноты, то придётся строить инструмент с такой, например, клавиатурой:

Если играть в До-мажоре или каких-то близких тональностях, достаточно будет среднего ряда клавиш. А вот чистую квинту от G# придётся играть так: G# на средней клавиатуре и D# на верхней. И вообще: в тональностях, в которых много «чёрных клавиш» часть нот придётся брать на одной клавиатуре, часть на другой.

И теперь одна квинта из двенадцати не чистая, а на пифагорову комму меньше чистой.

Эту квинту назвали «волчьей» квинтой. «Биения», которые возникают в «волчьей» квинте, напомнили кому-то волчий вой, отсюда название.

Одна плохая квинта из двенадцати — ещё не беда (в конце концов, мы можем избегать игры в тональностях, в которых эта квинта встречается — а это половина всех тональностей). Беда в том, что ВСЕ интервалы в пифагоровом строе получены из квинт, а значит — любой интервал, в котором участвует волчья квинта, уменьшается или увеличивается на пифагорову комму. Например, большая секунда получается из двух квинт, поэтому из 12-ти больших секунд 10 штук получаются чистыми, а две (C#-D# и G#-A#) — уменьшены на пифагорову комму. Септимы D#-C# и A#-G#, соответственно, увеличены на пифагорову комму. С другими интервалами такая же беда, только там изменённых интервалов получится ещё больше. Например, большая терция строится из четырёх квинт, поэтому из 12-ти больших терций 8 будут «обычного» размера, а 4 штуки — на пифагорову комму меньше.

Ещё одна проблема с пифагоровым строем — терции в нём серьёзно отличаются от чистых. Пифагорова большая терция — это «четыре чистых квинты минус две октавы». То есть, 3 /2* 3 /2* 3 /2* 3 /2:4. Получается 81 /64, а это заметно больше, чем чистая большая терция 5 /4 (1,265625 > 1,25).

То же самое с малой терцией. Пифагорова малая терция — это «две октавы минус три чистые квинты», или 2 /3* 2 /3* 2 /3*4. Получается 32 /27, и это заметно меньше, чем чистая малая терция 6 /5 (1,185185.

Интервал, на который они отличаются, называется синтонической коммой. Её размер — 81:80 или 21.51. цент (примерно одна пятая нынешнего полутона). С этой коммой мы уже встречались в начале текста — именно настолько повышалась До в мелодии, состоящей из чистых интервалов — и встретимся ещё.

Пифагоровы терции звучат для нас вполне норм, потому что они близки к нашим нынешним терциям (которые тоже совсем нечистые, но мы привыкли). Но средневековым музыкантам это было не норм, поэтому терция в то время не использовалась как основа гармонии.

Пифагоров строй использовали примерно до 15 века. Потом его стали модифицировать, чтобы как-то поправить ситуацию с терциями.

Среднетоновый строй на 1/4 коммы

В 16 веке появился новый строй — среднетоновый на 1/4 коммы. Он устроен так же как пифагоров, только размер всех квинт уменьшен ровно настолько, чтобы большая терция стала чистой.

Вот как это работает. Пифагорова большая терция создаётся с помощью четырёх квинт: строим цепочку квинт С-G-D-A-E, понижаем полученную E на две октавы, и получаем терцию C-E, которая, как я показывал выше, не чистая, а на синтоническую комму больше чистой. Если уменьшить каждую квинту на 1/4 синтонической коммы, то терция, полученная из четырёх квинт, уменьшится на одну синтоническую комму, а значит, станет равна чистой терции. При этом квинта перестала быть чистой, но и не сильно пострадала — уменьшилась всего на 5 центов.

Все остальные интервалы тоже получены из квинты, поэтому их размеры тоже изменились. Одним это пошло на пользу, другим — нет. Например, малая терция стала почти чистой (всего на 6 центов меньше чистой), большая секунда стала на 11 центов меньше чистой, и так далее. Но в целом интервалы получились приемлемые.

К сожалению, проблемы с «волчьей квинтой» и прочими волчьими интервалами здесь ещё хуже, чем в пифагоровом строе. В пифагоровом строе «волчья квинта» на пифагорову комму меньше чистой, а в среднетоновом — на полторы пифагоровы коммы больше. Поэтому одна квинта из двенадцати у нас получается безобразно, на 35 центов, увеличенной. Две большие секунды из двенадцати получаются безобразно увеличенными (на 30 центов больше чистой). 9 из 12-ти малых терций почти чистые, зато остальные три — на 47(!!) центов уменьшены. 8 из 12-ти больших терций совершенно чистые, зато остальные на 41(!) цент увеличены.

В итоге, при игре в тональностях, недалеко отходящих от основной ноты, мы получаем совершенно чистые большие терции и приемлемо чистые остальные интервалы. А вот в каком-нибудь Фа-диез мажоре будет много фальшивящих интервалов.

Одна и та же последовательность аккордов в разных тональностях. Начинаем с базового До мажора и сдвигаемся каждый раз на тон выше. Где-то в середине — там, где аккорды максимально далеки от базовой тональности — можно услышать некую фальшь.

Среднетоновый строй на 1/4 коммы был основным строем в европейской музыке до начала 18-го века, а на многих органах — до середины 19-го века.

Другая идея, которая возникла в конце 16 века — построить такой звукоряд, чтобы интервалы были максимально чистыми хотя бы в пределах одной тональности.

Возьмём ноту F и прибавим к ней чистую большую терцию, получив ноту A. К этой A прибавим чистую малую терцию и получим C. Продолжим чередовать большие и малые терции пока не получится 7 нот:

Нота F A C E G B D
Соотношение 5:4 6:5 5:4 6:5 5:4 6:5

Чистая большая терция и чистая малая терция дают в сумме чистую квинту ( 5 /4* 6 /5= 3 /2; хоть где-то эти чистые интервалы сходятся!), поэтому квинты F-C, A-E, C-G, E-B и G-D здесь получились чистые.

Соберём эти ноты в одну октаву и получим звукоряд До-мажор — CDEFGABC, в котором почти все интервалы чистые. Чистыми получились все большие терции (CE, FA и GB) и три из четырёх малых терций (E-G, A-C и B-D). Однако, полного совершенства не получилось даже здесь: квинта D-A и малая терция D-F на пифагорову комму меньше, чем чистые.

Кроме того, получились две разных больших секунды. Одна — C-D, F-G и A-B — такая же как в пифагоровом строе (9:8 или 204 цента). Вторая — D-E и G-A — на пифагорову комму меньше (10:9 или 182 цента). Малые секунды E-F и B-C одинаковые — 15:16 (112 центов).

Итак, у нас есть 7 «белых» нот, интервалы между которыми чисты настолько, насколько это возможно. Добавим к ним 5 оставшихся «чёрных» нот (например, вычтем квинту из F и получим Bb, и так далее).

Получился строй, в котором интервалы в «исходной» тональности (До-мажор) и близких к ней тональностях — в основном чистые. Но если фальши убавилось в одном месте, её должно прибавиться где-то ещё, поэтому интервалы в далёких от До-Мажора тональностях будут сильно фальшивить.

Сейчас в чистом строю играют только музыканты, аутентично исполняющие древнюю музыку. А с другой стороны, инструменты, у которых высота нот не фиксированная (вокал, безладовые струнные, часть духовых), на практике часто склоняются к чистым интервалам. Например, певцы, поющие терцию, могут подстраиваться друг под друга так, чтобы исчезли «биения».

Все терции и квинты в натуральном До мажоре.

«Хорошо темперированные» строи

В конце 17-начале 18 века появились строи, разработанные так, чтобы можно было играть во всех или почти всех тональностях с минимальной «лажей» в интервалах. Идея была в том, чтобы понижать не все квинты, как в среднетоновом строе, а выборочно понижать часть из них.

Этих строёв было множество. Например, в одной из темпераций Веркмейстера пять квинт (C-G, D-A, E-B, F#-C#, and Bb-F) уменьшены на 1/3 коммы, две квинты (G#-D# и Eb-Bb) увеличены на 1/3 коммы, а остальные квинты — чистые.

В «хорошо темперированных» строях одни интервалы получаются чистыми, другие — почти чистыми, и лишь некоторые отклоняются сильно. В итоге стало возможно играть во всех тональностях без сильной фальши. Тональности получились разными — в одних было больше отклонений от чистых интервалов, чем в других, и распределение этих отклонений получалось разное. Если в нынешнем, равномерно темперированном строе перенести музыку в другую тональность, то она прозвучит точно так же (в том смысле, что соотношения между всеми нотами останутся такими же). А в «хорошо темперированном» строе от этого изменится «оттенок» музыки, потому что интервалы будут немного другими.

Здесь нельзя не упомянуть «Хорошо темперированный клавир» — сборник произведений Баха, вышедший в 1722 году. Он состоит из произведений во всех 24-х тональностях (12 мажорных и 12 минорных). Название, скорее всего, отсылает к «хорошо темперированным» строям, тем более что и состав сборника как бы говорит: наконец-то появился строй, в котором можно играть во всех тональностях!

Бах был недоволен общепринятым тогда среднетоновым строем и настраивал свои инструменты как-то по своему. Неизвестно, какую именно темперацию он использовал. Некоторые музыковеды даже полагают, что строй Баха каким-то образом зашифрован в тринадцати петлях, нарисованных им на заглавии сборника:

Равномерно темперированный строй

Идея разбить октаву на 12 равных частей высказывалась с древних времён. Это решает проблему с несходящимся квинтовым кругом, делает все интервалы одинаковыми, а все тональности равноправными. Однако на практике её применять не спешили. Во первых, терции в этом строе почти такие же нечистые, как и в пифагоровом. Во-вторых, для расчётов соотношений между нотами нужна продвинутая математика — ведь всё основано на корне 12-й степени из двух. В-третьих, в эпоху «хорошо темперированных строёв» композиторам очень нравилось то, что у разных тональностей разный «оттенок» и характер.

В течение 19 века многие композиторы (например, Бетховен) начали широко применять в музыке модуляции в далёкие тональности, и идея о равноправности тональностей становилась всё более привлекательной.

Итак, берём октаву ( 2 /1) и разбиваем её на 12 равных интервалов — полутонов, из которых будем составлять все остальные интервалы (большая терция — это 4 полутона, чистая квинта — 7 полутонов, и так далее). Каждый полутон равняется корню 12-й степени из двух (2 1 /12 ) — примерно 1.059463. Теперь между двумя соседними нотами ВСЕГДА интервал в 100 центов. Все терции одинаковы по размеру, все квинты одинаковые, и так далее.

В этом строю нет ни одного чистого интервала кроме октавы — все остальные определяются не то чтобы непростыми дробями (как в пифагоровом строе), а вообще иррациональными отношениями. Очень близки к чистым оказались квинта (выше чистой всего на 2 цента), и большая секунда (ниже чистой всего на 4 цента). А вот терциям не повезло. Малая терция получилась на 16 центов меньше чистой, а большая — на 14 центов больше. Это серьёзная разница, приводящая к заметным биениям:

Тем не менее к 20 веку практически все музыканты перешли на этот строй (а лютни и гитары на нём всегда и были). Равноправие тональностей и полное отсутствие «волчьих» интервалов оказалось важнее, чем нечистые терции.

В следующей части поста — ещё аудиопримеры и таблицы с интервалами.

1 — Например:
Три чистые большие терции не равны октаве, а меньше: 5 /4* 5 /4* 5 /4=1,953125.
Четыре чистые малые терции не равны октаве, а больше: 6 /5* 6 /5* 6 /5* 6 /5=2,0736
Шесть чистых тонов не равны октаве, а больше: 9 /8* 9 /8* 9 /8* 9 /8* 9 /8* 9 /8=2,027286529541015625.

2 — тем не менее были попытки решить проблему хотя бы частично и существовали инструменты, на которых одна, две или три из чёрных клавиш в каждой октаве раздвоены — например, Ля-бемоль и Соль-диез.

Например, вот этот клавесин, с 14 клавишами на октаву:

Источник

Оцените статью