- Схемы усилителей мощности на германиевых транзисторах. Секреты звучания забытых германиевых УНЧ.
- Германиевые транзисторы: обзор, характеристики, отзывы. Самые музыкальные транзисторы
- Зарождение элемента
- Германий
- Хроника
- Зарождение нового мира
- Патентное право
- Простыми словами
- Принцип действия
- Функции
- Советская «силиконовая долина»
- Прошлое против будущего
- Аудио
- Советы к действию
- Гитары
Схемы усилителей мощности на германиевых транзисторах.
Секреты звучания забытых германиевых УНЧ.
Эх, жалко пацанов — королевство маловато, разгуляться негде!
Ни ламповых тебе однотактников, ни гераниевых раритетов. Что ещё остаётся пытливому уму неоперившегося меломана?
Разве что брейкануть под японское хокку, да кайфануть для большего эффекта под уханье бумбокса.
«Кремний — всему голова» — крикнут яростные члены на форумных дебатах.
«Не надо впаривать нам этот шняга-силикатный экстракт» — вторят им другие, «для начала послушайте своими руками, а потом делайте свои тупоголовые выводы».
На самом деле, слушать надо!
Перелопатить определённое количество разномастной усилительной аппаратуры — тоже надо.
Не обязательно быть музыкантом со стажем, но таить в себе зачатки какого-никакого слуха — опять же, надо.
И тогда любой пацак, владелец старого пепелаца, сможет авторитетно заявить: «Однако разница в звуке есть, и она весьма существенна!»
На этой странице поговорим об УНЧ на германиевых транзисторах.
Своеобразие германиевого звучания, как правило, сводится к двум устойчивым постулатам:
1. Усилители на германиевых транзисторах отличаются музыкальностью,
2. Звук похож на звук ламповика.
И если первый пункт у меня возражений не вызывает, то со вторым мнением коллег позволю вежливо не согласиться — не похож, абсолютно разное звучание.
Электрофон сетевой транзисторный «Вега-101-стерео» с усилителем на германиевых транзисторах, выпускаемый Бердским радиозаводов с начала 1972 по 1982 год, заложил в головы современников основы понимания того, каким должен быть высококачественный стереофонический звук.
Время шло, появлялись на свет и более продвинутые вертушки с магнитными звукоснимателями, и значительно более мощные УНЧ на кремниевых транзисторах с незаурядными характеристиками.
Однако душещипательные воспоминания о том, как звучали в конце 70-ых простенькие Веги с их примитивной схемотехникой открыли историю ожесточённой борьбы человечества с феноменом транзисторного звучания.
Ну да и ладно, пора переходить на новый уровень — нарисовать пару-тройку принципиальных схем усилителей низкой частоты на германиевых транзисторах, но для начала озадачусь вопросом: Что любит и что не любит германий?
1. Германий любит простоту и не приемлет наворотов. Дифференциальный каскад с источником тока в цепи эмиттера — уже является буржуазным излишеством.
2. Германий не любит перегрева, легко может напустить дыма и отправиться к праотцам электроники Амперу и Ому в ответ на потерю бдительности в процессе настройки схемы.
А теперь обещанные схемы.
Рис.1 Схема усилителя мощностью 1,5 Вт
Номинальная мощность усилителя при коэффициенте гармоник на частоте 1000Гц менее 0,1% — 1 Вт, максимальная — 1,5Вт, чувствительность по входу — 0,2 В.
Усилитель сохраняет работоспособность при понижении напряжения питания до 9В.
Подбором номинала резистора R8 устанавливается значение напряжения на эмиттерах выходных транзисторов, равное половине напряжения питания.
Подбором номинала резистора R2 устанавливается значение напряжения на коллекторе транзистора V1, равное половине напряжения питания.
Рис.2 Схема однотактного усилителя класса А
Схема, приведённая на Рис.2 — для эстетов, желающих порадовать свой слуховой аппарат ни с чем не сравнимым звуком однотактного усилителя, работающего в чистом режиме А.
Для настройки усилителя следует подбором номинала резистора R9 установить ток покоя выходного транзистора — 150мА.
Рис.3 Схема германиевого усилителя мощностью 10 Вт
На рис.3 показана принципиальная схема универсального усилителя НЧ, собранного на девяти транзисторах и развивающего выходную мощность до 10 Вт при сопротивлении нагрузки 4 Ом и входном напряжении около 10 мВ.
При налаживании устройства подстроечным резистором R2 устанавливают выходное напряжение в точке соединения транзисторов VT8 и VT9 равным половине напряжения питания.
Рис.4 Схема мощного усилителя на германиевых транзисторах
Схема более мощного усилителя приведена на Рис.4. Усилитель рассчитан на подключение электрогитары и микрофона, но может быть использован также совместно с проигрывателем, магнитофоном или радиоприёмником.
Основные технические данные, приведённые автором:
Номинальная выходная мощность — 30 Вт.
Максимальная выходная мощность — 40 Вт.
Сопротивление нагрузки 3,5-5 Ом.
Полоса рабочих частот 30-16000 Гц.
Коэффициент нелинейных искажений — не более 1,5%.
Чувствительность с выхода микрофона — 10 мВ.
Чувствительность с выхода электрогитары — 0,1 В.
Напряжение 15 В на коллекторе транзистора Т10 устанавливают резистором R19.
Ток покоя всего усилителя не должен превышать 170 мА.
Рис.5 Схема простого и мощного усилителя на германиевых транзисторах DTG110B
На Рис.5 приведена схема простого и мощного усилителя на германиевых транзисторах DTG110B. При подключении к его входу любого УНЧ мощностью 1,5-2 Вт устройство выдаёт на 8-ми омную нагрузку около 50 Вт чистого германиевого звука.
Согласующий трансформатор Т1 выполнен на железе Ш24 (толщина пакета 20-25мм) и содержит 3 одинаковые обмотки по 120 витков, намотанных на картонном каркасе проводом ПЭВ-1 или ПЭВ-2 диаметром 0,5-0,7мм.
Налаживание устройства заключается в подборе значений резисторов R2 R4 для достижения на выходе схемы нулевого потенциала и тока покоя транзисторов — 120-150 мА.
При снижении напряжения питания на каждом плече до 30В транзисторы DTG110B без каких-либо колебаний могут быть заменены на отечественные П210А.
Именно таким путём пошёл большой поклонник «германиевого» звука, схемотехник и постоянный участник выставок «Российский Hi-End» Жан Цихисели.
Вот что он пишет про свою конструкцию германиевого УМЗЧ, являющуюся развитием темы усилителя с согласующим трансформатором (Рис.6):
Рис.6 Схема усилителя на транзисторах П-210
«Вашему вниманию представлен германиевый усилитель с выходной мощностью 60 Вт на нагрузке 8 Ом. Выходные транзисторы, используемые в усилителе, П210А, П210Ш. Полоса частот: 20-16000гц. Субъективной нехватки высоких частот практически не ощущается. При нагрузке 4 Ом усилитель выдаёт 100вт.
Согласующий трансформатор выполнен на железе Ш20 на 40. Первичная обмотка разделена на две части и содержит 480 вит.
Вторичная обмотка содержит 72 витка и мотается в два провода одновременно. Сначала наматывается 240 вит первички, затем вторичка, затем снова 240 вит первички.
Диаметр провода первички 0,355 мм, вторички 0,63 мм.
Трансформатор собирается встык (с зазором), зазор — прокладка из кабельной бумаги примерно 0,25 мм.
Резистор номиналом 120 Ом включён для гарантированного отсутствия самовозбуждения при отключённой нагрузке.
Цепочки 250 Ом + 2 по 4.7 Ом, служат для подачи начального смещения на базы выходных транзисторов. С помощью подстроечных резисторов 4,7 Ом устанавливается ток покоя 100ма. Выходные транзисторы П210 должны быть при этом практически едва тёплые.
Для точной установки нулевого потенциала резисторы 250 Ом должны быть точно подобраны. В реальной конструкции они состоят из четырёх резисторов по 1 кОм 2вт.
Для плавной установки тока покоя используются подстроечные резисторы R18, R19 типа СП5-3В 4,7 Ом 5%».
Честно говоря, я не сильно понимаю, каким образом транзисторы П210А с Uкэ max = 65 В будут нормально и надёжно работать в устройстве с напряжением питания ± 40 В. Однако есть такая схема и есть такой автор, и слов из песни не выкинешь, и не пропьёшь талант, тем более, что в материальной жизни этот усилитель существует и наверняка кого-то радует красивым и мощным германиевым звуком.
Ладно, едем дальше.
Рис.7 Усилитель мощностью 30Вт на ГТ806
Схема, представленная на Рис.7, является переработанным под «германий» вариантом усилителя НЧ из статьи Николая Трошина журнале Радио №8 за 1989г (стр. 51-55). Творцом переработки является сам автор статьи. Вот что он пишет на страннице сайта http://vprl.ru:
«Выходная мощность этого усилителя 30 Вт при сопротивлении нагрузки акустических систем 4 Ома, и примерно 18 Вт при сопротивлении нагрузки 8 Ом.
Напряжение питания усилителя (U пит) двухполярное ±25 В;
Диапазон рабочих частот 20Гц…20кГц:
Транзисторы МП40А можно заменить на транзисторы МП21, МП25, МП26. Транзисторы ГТ402Г – на ГТ402В; ГТ404Г – на ГТ404В;
Выходные транзисторы ГТ806 можно ставить любых буквенных индексов. Применять более низкочастотные транзисторы типа П210, П216, П217 в этой схеме не рекомендую, поскольку на частотах выше 10кГц они здесь работают плоховато (заметны искажения), видимо, из-за нехватки усиления тока на высокой частоте.
Площадь радиаторов на выходные транзисторы должна быть не менее 200 см2, на предоконечные транзисторы не менее 10 см2.
На транзисторы типа ГТ402 радиаторы удобно делать из медной (латунной) или алюминиевой пластины, толщиной 0,5 мм, размером 44х26.5 мм.
Настройка правильно собранного из исправных элементов усилителя сводится к установке подстроечным резистором тока покоя выходного каскада 100мА (удобно контролировать на эмиттерном резисторе 1 Ом – напряжение 100мВ).
Диод VD1 желательно приклеить или прижать к радиатору выходного транзистора, что способствует лучшей термостабилизации. Однако если этого не делать, ток покоя выходного каскада от холодного 100мА до горячего 300мА меняется, в общем-то, не катастрофично.
Важно: перед первым включением необходимо выставить подстроечный резистор в нулевое сопротивление.
После настройки желательно подстроечный резистор выпаять из схемы, измерить его реальное сопротивление и заменить на постоянный».
Я никогда не ставил в выходные каскады УМЗЧ высокочастотные транзисторы ГТ806, однако знаю, что при их использовании порой возникают сложности, связанные как с устойчивостью усилителя, так и с надёжностью изделия, связанной с внезапными отказами транзисторов.
Такого же мнения придерживается и Жан Цихисели, который для звуковых целей рекомендует использовать следующий ряд германиевых транзисторов (из числа отечественных): П201, П202, П203, П4, 1Т403, ГТ402, ГТ404, ГТ703, ГТ705, П213-П217, П208, П210.
Источник
Германиевые транзисторы: обзор, характеристики, отзывы. Самые музыкальные транзисторы
Германиевые транзисторы переживали период своего расцвета в течение первого десятилетия полупроводниковой электроники, прежде чем их широко заменили кремниевые устройства сверхвысокой частоты. В данной статье обсудим, почему первый тип транзисторов до сих пор в музыкальной отрасли считается важным элементом и обладает высокой значимостью для ценителей хорошего звука.
Зарождение элемента
Германий был обнаружен Клеменсом и Винклером в немецком городе Фрайберг в 1886 году. Существование этого элемента предсказывал Менделеев, установив заранее его атомный вес, равный 71, и плотность 5,5 г/см 3 .
В начале осени 1885 года шахтер, работавший на серебряном руднике Химмельсфюрст близ Фрайберга, наткнулся на необычную руду. Она была передана Альбину Вейсбаху из близлежащей Горной академии, который подтвердил, что это новый минерал. Он в свою очередь попросил своего коллегу Винклера проанализировать добычу. Винклер обнаружил, что в составе найденного химического элемента находится 75 % серебра, 18 % серы, состав остального 7 %-ного объема находки ученый определить не смог.
К февралю 1886 года он понял, что это новый металлоподобный элемент. Когда были протестированы его свойства, стало ясно, что это недостающий элемент в таблице Менделеева, который располагается ниже кремния. Минерал, из которого он произошел, известен как аргиродит – Ag 8 GeS 6. Спустя несколько десятилетий этот элемент будет выступать основой германиевых транзисторов для звука.
Германий
В конце XIX века германий был впервые выделен и идентифицирован немецким химиком Клеменсом Винклером. Этот материал, названный в честь родины Винклера, долгое время считался малопроводящим металлом. Это утверждение было пересмотрено в период Второй мировой войны, так как именно тогда были обнаружены полупроводниковые свойства германия. Приборы, состоящие из германия, широко распространились в послевоенные годы. В это время нужно было удовлетворить потребность в производстве германиевых транзисторов и подобных устройств. Так, производство германия в США выросло с нескольких сотен килограммов в 1946 году до 45 тонн к 1960 году.
Хроника
История создания транзисторов начинается в 1947 году с компании Bell Laboratories, располагающейся в Нью-Джерси. В процессе участвовали трое блестящих американских физиков: Джон Бардин (1908–1991), Уолтер Браттэйн (1902–1987) и Уильям Шокли (1910–1989).
Команда, возглавляемая Шокли, пыталась разработать новый тип усилителя для телефонной системы США, но то, что они на самом деле изобрели, оказалось гораздо интереснее.
Бардин и Браттэйн соорудили первый транзистор во вторник 16 декабря 1947 года. Он известен как транзистор с точечным контактом. Шокли много работал над проектом, поэтому неудивительно, что он был взволнован и рассержен тем, что его отклонили. В скором времени он в одиночку сформировал теорию переходного транзистора. Это устройство по многим параметрам превосходит транзистор с точечным контактом.
Зарождение нового мира
В то время как Бардин бросил Bell Labs, чтобы стать академиком (он продолжил изучение германиевых транзисторов и сверхпроводников в Иллинойском университете), Браттэйн поработал еще некоторое время, а после ушел в педагогику. Шокли основал свою собственную компанию по производству транзисторов и создал уникальное место — Силиконовую долину. Это процветающий район в Калифорнии вокруг Пало-Альто, где находятся крупные корпорации электроники. Двое из его сотрудников, Роберт Нойс и Гордон Мур, основали компанию Intel — крупнейшего в мире производителя микросхем.
Бардин, Браттэйн и Шокли ненадолго воссоединились в 1956 году: за свое открытие они получили высшую в мире научную награду — Нобелевскую премию по физике.
Патентное право
Оригинальный дизайн транзистора с точечным контактом изложен в патенте США Джона Бардина и Уолтера Браттэйна, зарегистрированном в июне 1948 года (примерно через шесть месяцев после первоначального открытия). Патент выдан 3 октября 1950 года. Простой PN-транзистор обладал тонким верхним слоем германия P-типа (желтый) и нижним слоем германия N-типа (оранжевый). Германиевые транзисторы имели три контакта: эмиттер (E, красный), коллектор (C, синий) и база (G, зеленый).
Простыми словами
Принцип работы усилителя звука на транзисторах станет понятнее, если мы проведем аналогию с принципом работы водопроводного крана: излучатель — это трубопровод, а коллектор — кран. Данное сравнение помогает объяснить, как работает транзистор.
Представим, что транзистор – это водопроводный кран. Электрический ток действует, как вода. Транзистор имеет три контакта: основание, коллектор и эмиттер. Основание работает как ручка крана, коллектор — как вода, подающаяся в кран, а излучатель — как отверстие, из которого вода вытекает. Слегка поворачивая ручку крана, можно сдерживать мощный поток воды. Если слегка повернуть ручку крана, тогда скорость потока воды значительно увеличится. Если полностью закрыть ручку крана, то вода не будет течь. Если повернуть ручку полностью, то вода будет литься намного быстрее.
Принцип действия
Как говорилось ранее, германиевые транзисторы – схемы,у которых в основе три контакта: эмиттер (E), коллектор (C) и основание (B). База контролирует ток от коллектора к эмиттеру. Ток, который течет от коллектора к эмиттеру, пропорционален току базы. Ток эмиттера, или базовый ток равняется hFE. Данная установка использует резистор коллектора (RI). Если ток Ic протекает через RI, на этом резисторе будет сформировано напряжение, которое равно произведению Ic x RI. Это означает, что напряжение на транзисторе равно: E2 — (RI x Ic). Ic приблизительно равен Ie, поэтому, если IE = hFE x IB, то Ic также равен hFE x IB. Следовательно, после проведенной замены напряжение на транзисторах (E) составляет E2 (RI x le x hFE).
Функции
Усилитель звука на транзисторах построен на функциях усиления и коммутации. Если рассматривать в качестве примера радио, то сигналы, которые радио получает из атмосферы, чрезвычайно слабы. Радио усиливает эти сигналы через выход динамика. Это функция «усиления». Так, например, германиевый транзистор гт806 предназначен для использования в импульсных устройствах, преобразователях и стабилизаторах тока и напряжения.
Для аналогового радио простое усиление сигнала заставит динамики воспроизводить звук. Однако для цифровых устройств форму входного сигнала необходимо изменить. Для цифрового устройства, такого как компьютер или MP3-плеер, транзистор должен переключать состояние сигнала в 0 или 1. Это «функция переключения»
Можно найти более сложные компоненты, называющиеся транзисторами. Речь об интегральных микросхемах, изготовленных из жидкостной кремниевой инфильтрации.
Советская «силиконовая долина»
В советское время, в начале 60-х годов, город Зеленоград стал плацдармом для организации в нем Центра микроэлектроники. Советский инженер Щиголь Ф. А. разрабатывает транзистор 2Т312 и его аналог 2Т319, который в последующем стал главным компонентом гибридных цепей. Именно этот человек заложил основу для выпуска в СССР германиевых транзисторов.
В 1964 году завод «Ангстрем» на базе Научно-исследовательского института точных технологий создал первую интегральную микросхему IC-Path с 20 элементами на кристалле, выполняющую задачу совокупности транзисторов с резистивными соединениями. В это же время появилась другая технология: были запущены первые плоские транзисторы «Плоскость».
В 1966 году в Пульсарском научно-исследовательском институте начала действовать первая экспериментальная станция по производству плоских интегральных микросхем. В NIIME группа доктора Валиева начала производство линейных резисторов с логическими интегральными схемами.
В 1968 году Исследовательский институт Пульсар произвел первую часть тонкопленочных гибридных ИС с плоскими транзисторами с открытой рамой типов KD910, KD911, KT318, которые предназначены для связи, телевидения, радиовещания.
Линейные транзисторы с цифровыми ИС массового использования (типа 155) были разработаны в Научно-исследовательском институте МЭ. В 1969 году советский физик Алферов Ж. И. открыл миру теорию по управлению электронными и световыми потоками в гетероструктурах на базе арсенид-галлиевой системы.
Прошлое против будущего
В основе первых серийных транзисторов находился германий. P-тип и N-тип германия были соединены вместе, образуя переходный транзистор.
Американская компания Fairchild Semiconductor в 1960-х годах изобрела планарный процесс. Здесь для производства транзисторов с улучшенными воспроизводимыми характеристиками в промышленном масштабе использовался кремний и фотолитография. Это привело к идее интегральных схем.
Существенные различия между германиевыми и кремниевыми транзисторами заключаются в следующем:
- кремниевые транзисторы намного дешевле;
- кремниевый транзистор имеет пороговое напряжение 0,7 В, в то время как германий – 0,3 В;
- кремний выдерживает температуры около 200 ° C, германий – 85 ° C;
- ток утечки кремния измеряется в нА, для германия – в мА;
- PIV Si больше по сравнению с Ge;
- Ge может обнаружить небольшие изменения в сигналах, следовательно, они являются самыми «музыкальными» транзисторами из-за высокой чувствительности.
Аудио
Для получения качественного звука на аналоговом аудиооборудовании нужно определиться. Что выбрать: современные интегральные схемы (ИС) или УНЧ на германиевых транзисторах?
В первые дни появления транзисторов ученые и инженеры спорили относительно материала, который будет лежать в основе работы устройств. Среди элементов периодической таблицы одни являются проводниками, другие – изоляторами. Но у некоторых элементов есть интересное свойство, позволяющее им называться полупроводниками. Кремний является полупроводником и используется почти во всех транзисторах и интегральных схемах, изготовленных сегодня.
Но до того, как кремний стал использоваться в качестве подходящего материала для изготовления транзистора, его заменял германий. Преимущество кремния по сравнению с германием объяснялось в основном более высоким коэффициентом усиления, который мог быть достигнут.
Хотя германиевые транзисторы разных производителей часто обладают отличными друг от друга характеристиками, считается, что некоторые типы дают теплый, насыщенный и динамичный звук. Звуки могут варьироваться от хрустящих и неровных до приглушенных и ровных с промежуточными между ними. Несомненно, подобный транзистор заслуживает дальнейшего изучения как усилительного устройства.
Советы к действию
Скупка радиодеталей – процесс, при котором можно найти все необходимое для своих работ. Что же говорят специалисты?
По мнению многих радиолюбителей и ценителей качественного звука, самыми музыкальными транзисторами признаны серии П605, КТ602, КТ908.
Для стабилизаторов лучше использовать серии AD148, AD162 марок Siemens, Philips, Telefunken.
Судя по отзывам наиболее мощный из германиевых транзисторов – ГТ806, он выигрывает по сравнению с серией П605, однако по частоте тембра предпочтение лучше отдать последним. Стоит обратить внимание на тип КТ851 и КТ850, а также полевой транзистор КП904.
Не советуют использовать типы П210 и ASY21, так как на деле они обладают плохими звуковыми характеристиками.
Гитары
Хотя германиевые транзисторы разных марок отличаются характеристиками все они могут быть использованы для создания динамичного, более насыщенного и приятного звука. Они могут помочь изменить звучание гитары в широком диапазоне тонов, включая интенсивные, приглушенные, резкие, более ровные или их комбинацию. В некоторых устройствах они широко используются для придания гитарной музыке великолепного игрового, чрезвычайно ощутимого и мягкого звучания.
Какой существенный недостаток есть у германиевых транзисторов? Конечно же, их непредсказуемое поведение. По словам экспертов, нужно будет провести грандиозную скупку радиодеталей, то есть приобрести сотни транзисторов, чтобы после многократного тестирования найти подходящую для себя. Этот недостаток был выявлен инженером студии и музыкантом Закари Вексом во время поисков старинных блоков для звуковых эффектов.
Векс начал создавать блоки эффектов для гитар Fuzz, чтобы сделать звук гитарной музыки чистым, соединив в определенном соотношении оригинальные блоки Fuzz. Он использовал эти транзисторы, не проверяя их потенциала, чтобы получить лучшую комбинацию, опираясь исключительно на удачу. В итоге он был вынужден отказаться от некоторых транзисторов из-за их неподходящего звучания и стал производить хорошие блоки Fuzz с германиевыми транзисторами на своем заводе.
Источник