- Сопряжения
- Сопряжение углов (Сопряжение пересекающихся прямых)
- Сопряжение прямого угла(Сопряжение пересекающихся прямых под прямым углом)
- Сопряжение острого угла(Сопряжение пересекающихся прямых под острым углом)
- Сопряжение тупого угла(Сопряжение пересекающихся прямых под тупым углом)
- Сопряжение параллельных прямых линий
- Сопряжение окружностей(дуг) с прямой линией
- Внешнее сопряжение дуги и прямой линии
- Внутреннее сопряжение прямой линии с дугой
- Сопряжение окружностей (дуг)
- Внешнее сопряжение дуг окружностей
- Внутреннее сопряжение дуг окружностей
- Смешанное сопряжение дуг окружностей
- СОПРЯЖЕНИЕ. ГИТАРА. Инженерная графика │Урок #40
- Для просмотра онлайн кликните на видео ⤵
- Сопряжение гитара инженерная графика
- СОПРЯЖЕНИЕ ДВУХ СТОРОН УГЛА ДУГОЙ ОКРУЖНОСТИ ЗАДАННОГО РАДИУСА
- СОПРЯЖЕНИЕ ПРЯМОЙ С ДУГОЙ ОКРУЖНОСТИ
- СОПРЯЖЕНИЕ ДУГИ С ДУГОЙ
Сопряжения
В этой небольшой статье, будут рассмотрены основные виды сопряжений и Вы узнаете о том, как построить сопряжение углов, прямых линий, окружностей и дуг, окружностей с прямой.
Сопряжением называют плавный переход одной линии в другую. Для того чтобы построить сопряжение, нужно найти центр сопряжения и точки сопряжений.
Точка сопряжения – это общая точка для сопрягаемых линий. Точку сопряжения также называют точкой перехода.
Ниже будут рассмотрены основные типы сопряжений.
Сопряжение углов (Сопряжение пересекающихся прямых)
Сопряжение прямого угла(Сопряжение пересекающихся прямых под прямым углом)
В данном примере будет рассмотрено построение сопряжения прямого угла заданным радиусом сопряжения R. Первым делом найдём точки сопряжения. Для нахождения точек сопряжения, нужно поставить циркуль в вершину прямого угла и провести дугу радиусом R до пересечения со сторонами угла. Полученные точки и будут являться точками сопряжения. Далее нужно найти центр сопряжения. Центром сопряжения будет точка равноудалённая от сторон угла. Проведём из точек a и b две дуги радиусом сопряжения R до пересечения друг с другом. Полученная на пересечении точка О и будет центром сопряжения. Теперь из центра сопряжения точки О описываем дугу радиусом сопряжения R от точки a до точки b. Сопряжение прямого угла построено.
Сопряжение острого угла(Сопряжение пересекающихся прямых под острым углом)
Ещё один пример сопряжения угла. В этом примере будет построено сопряжение
острого угла. Для построения сопряжения острого угла раствором циркуля,равным радиусу сопряжения R, проведём из двух произвольных точек на каждой стороне угла по две дуги. Затем проведём касательные к дугам до пересечения в точке О, центре сопряжения. Из полученного центра сопряжения опустим перпендикуляр к каждой из сторон угла. Так мы получим точки сопряжения a и b. Затем проведём из центра сопряжения, точки О, дугу радиусом сопряжения R, соединив точки сопряжения a
и b. Сопряжение острого угла построено.
Сопряжение тупого угла(Сопряжение пересекающихся прямых под тупым углом)
Сопряжение тупого угла строится по аналогии с сопряжением острого угла. Мы также, сначала радиусом сопряжения R проводим по две дуги из двух произвольно взятых точек на каждой из сторон, а затем проводим касательные к этим дугам до пересечения в точке О, центре сопряжения. Затем опускаем перпендикуляры из центра сопряжения к каждой из сторон и соединяем дугой, равной радиусу сопряжения тупого угла R, полученные точки a и b.
Сопряжение параллельных прямых линий
Построим сопряжение двух параллельных прямых. Нам задана точка сопряжения a, лежащая на одной прямой. Из точки a проведём перпендикуляр до пересечения его с другой прямой в точке b. Точки a и b являются точками сопряжения прямых линий. Проведя из каждой точки дугу, радиусом больш отрезка ab, найдём центр сопряжения — точку О. Из центра сопряжения проведём дугу заданного радиуса сопряжения R.
Сопряжение окружностей(дуг) с прямой линией
Внешнее сопряжение дуги и прямой линии
В этом примере будет построено сопряжение заданным радиусом r прямой линии, заданной отрезком AB, и дуги окружности радиусом R.
Сначала найдём центр сопряжения. Для этого проведём прямую, параллельную отрезку AB и отстоящую от него на расстояние радиуса сопряжения r, и дугу, из центра окружности O R радиусом R+r. Точка пересечения дуги и прямой и будет центром сопряжения – точкой О r .
Из центра сопряжения, точки О r , опустим перпендикуляр на прямую AB. Точка D, полученная на пересечении перпендикуляра и отрезка AB, и будет точкой сопряжения. Найдём вторую точку сопряжения на дуге окружности. Для этого соединим центр окружности О R и центр сопряжения О r линией. Получим вторую точку сопряжения – точку C. Из центра сопряжения проведём дугу сопряжения радиусом r, соединив точки сопряжения.
Внутреннее сопряжение прямой линии с дугой
По аналогии строится внутреннее сопряжение прямой линии с дугой. Рассмотрим пример построения сопряжения радиусом r прямой линии, заданной отрезком AB, и дуги окружности радиуса R. Найдём центр сопряжения. Для этого построим прямую, параллельную отрезку AB и отстоящую от него на расстояние радиуса r, и дугу, из центра окружности O R радиусом R-r. Точка О r , полученная на пересечении прямой и дуги, и будет центром сопряжения.
Из центра сопряжения(точка О r ) опустим перпендикуляр на прямую AB. Точка D, полученная на основании перпендикуляра, и будет точкой сопряжения.
Для нахождения второй точки сопряжения на дуге окружности, соединим центр сопряжения Оr и центр окружности О R прямой линией. На пересечении линии с дугой окружности получим вторую точку сопряжения – точку C. Из точки О r , центра сопряжения, проведём дугу радиусом r, соединив точки сопряжения.
Сопряжение окружностей (дуг)
Внешнее сопряжение дуг окружностей
Внешним сопряжением считается сопряжение, при котором центры сопрягаемых окружностей(дуг) O1( радиус R1) и O2 (радиус R2) располагаются за сопрягающей дугой радиуса R. На примере рассмотрено внешнее сопряжение дуг. Сначала находим центр сопряжения. Центром сопряжения является точка пересечения дуг окружностей с радиусами R+R1 и R+R2, построенных из центров окружностей O1(R1) и O2(R2) соответственно. Затем центры окружностей O1 и O2 соединяем прямыми с центром сопряжения, точкой O, и на пересечении линий с окружностями O1 и O2 получаем точки сопряжения A и B. После этого, из центра сопряжения строим дугу заданного радиуса сопряжения R и соединяем ей точки A и B.
Внутреннее сопряжение дуг окружностей
Внутренним сопряжением называется сопряжение, при котором центры сопрягаемых дуг O1, радиуса R1, и O2, радиус R2, располагаются внутри сопрягающей их дуги заданного радиуса R. На картинке ниже приведён пример построения внутреннего сопряжения окружностей(дуг). Вначале мы находим центр сопряжения, которым является точка O, точка пересечения дуг окружностей с радиусами R-R1 и R-R2 проведённых из центров окружностей O1и O2 соответственно. После чего соединяем центры окружностей O1 и O2 прямыми линиями с центром сопряжения и на пересечении линий с окружностями O1 и O2 получаем точки сопряжения A и B. Затем из центра сопряжения строим дугу сопряжения радиуса R и строим сопряжение.
Смешанное сопряжение дуг окружностей
Смешанным сопряжением дуг является сопряжение, при котором центр одной из сопрягаемых дуг (O1) лежит за пределами сопрягающей их дуги радиуса R, а центр другой окружности(O2) – внутри её. На иллюстрации ниже приведён пример смешанного сопряжения окружностей. Сначала находим центр сопряжения, точку O. Для нахождения центра сопряжения строим дуги окружностей с радиусами R+R1, из центра окружности радиуса R1 точки O1, и R-R2, из центра окружности радиуса R2 точки O2. После чего соединяем центр сопряжения точку O с центрами окружностей O1 и O2 прямыми и на пересечении с линиями соответствующих окружностей получаем точки сопряжения A и B. Затем строим сопряжение.
Источник
СОПРЯЖЕНИЕ. ГИТАРА. Инженерная графика │Урок #40
Для просмотра онлайн кликните на видео ⤵
Сопряжение окружностей #черчение #сопряжение Подробнее
#3 Сопряжение в Автокаде. Чертим деталь Подробнее
[Сопряжение и окружность в Автокад] Чертеж детали «Серьга» в AutoCAD Подробнее
1 2 4 сопряжение окружностей Подробнее
КОМПАС 3D Построение сопряжения Подробнее
Вариант 12 1 Стойка Подробнее
[Сопряжения и окружности в Автокад] Чертеж детали «Ушко» в AutoCAD Подробнее
Урок 3 — AutoCAD — Сопряжения (AutoCAD 2020) Подробнее
YT 0001 Сопряжение Подробнее
Сопряжение прямой и окружности Подробнее
Геометрическое черчение. Построение дуги сопряжения окружности и прямой Подробнее
Видеоуроки Компас 3D V19. Сопряжения Компас в 3D V19 Подробнее
Создание 2D чертежа детали корпуса в AutoCAD 2017 Подробнее
Видеоуроки по КОМПАС 3D. Урок 2 Сопряжение линий Подробнее
Источник
Сопряжение гитара инженерная графика
При вычерчивании деталей машин и приборов, контуры очертаний которых состоят из прямых линий и дуг окружностей с плавными переходами от одной линии в другую, часто применяют сопряжения. Сопряжением называется плавный переход одной линии в другую. На рис. 60 показаны примеры применения сопряжений.
Контур рычага (рис. 60а) состоит из отдельных линий, плавно переходящих одна в другую, например, в точках А, А1 виден плавный переход от дуги окружности к прямой линии, а в точках В, В1 — от дуги одной окружности к дуге другой окружности (рис. 60, б). На рис. 60, в изображен двурогий крюк. На чертеже контура крюка (рис. 60, г) в точке А виден плавный переход от дуги окружности D=200 к прямой линии, а в точке В — от дуги окружности радиуса R460 к дуге радиуса R260.
Для точного и правильного выполнения чертежей необходимо уметь выполнять построения сопряжений, которые основаны на двух положениях.
- Для сопряжения прямой линии и дуги необходимо, чтобы центр окружности, которой принадлежит дуга, лежал на перпендикуляре к прямой, восставленном из точки сопряжения (рис. 61, а).
- Для сопряжения двух дуг необходимо, чтобы центры окружностей, которым принадлежат дуги, лежали на прямой, проходящей через точку сопряжения (рис. 61, 6).
СОПРЯЖЕНИЕ ДВУХ СТОРОН УГЛА ДУГОЙ ОКРУЖНОСТИ ЗАДАННОГО РАДИУСА
При выполнении чертежей деталей, показанных на рис. 62, б, г, е, выполняют построение сопряжения двух сторон угла дугой окружности заданного радиуса. На рис. 62, а выполнено построение сопряжения сторон острого угла дугой, на рис. 62, в — тупого угла, на рис. 62, д — прямого.
Сопряжение двух сторон угла (острого или тупого) дугой заданного радиуса R выполняют следующим образом (рис. 62, а и в).
Параллельно сторонам угла на расстоянии, равном радиусу дуги R, проводят две вспомогательные прямые линии. Точка пересечения этих прямых (точка О) будет центром дуги радиуса Я, т. е. центром сопряжения. Из центра О описывают дугу, плавно переходящую в прямые — стороны угла. Дугу заканчивают в точках сопряжения n и n1 которые являются Основаниями перпендикуляров, опущенных из центра О на стороны угла.
При построении сопряжения сторон прямого угла центр дуги сопряжения проще находить с помощью циркуля (рис. 62, д). Из вершины угла А проводят дугу радиусом R, равным радиусу сопряжения. На сторонах угла получают точки сопряжения n и n1 . Из этих точек, как из центров, проводят дуги радиусом R до взаимного пересечения в точке О, являющейся центром сопряжения. Из центра О описывают дугу сопряжения.
СОПРЯЖЕНИЕ ПРЯМОЙ С ДУГОЙ ОКРУЖНОСТИ
Сопряжение прямой с дугой окружности может быть выполнено при помощи дуги с внутренним касанием (рис. 63, в) и дуги с внешним касанием (рис. 63, а).
На рис. 63, а показано сопряжение дуги окружности радиусом R и прямой линии А В дугой окружности радиуса r с внешним касанием. Для построения такого сопряжения проводят окружность радиуса R и прямую АВ. Параллельно заданной прямой на расстоянии, равном радиусу r (радиус сопрягающей дуги), проводят прямую ab. Из центра О проводят дугу окружности
радиусом, равным сумме радиусов и r, до пересечения ее с прямой ab в точке О1 Точка О1 является центром дуги сопряжения.
Точку сопряжения с находят на пересечении прямой 00 1 с дугой окружности радиуса R. Точка сопряжения C1 является основанием перпендикуляра, опущенного из центра О1 на данную прямую При помощи аналогичных построений могут быть найдены точки 02,
На рис. 63, б показан кронштейн, при вычерчивании контура которого необходимо выполнить построения, описанные выше.
На рис. 63, в выполнено сопряжение дуги радиуса R с прямой А В дугой радиуса r с внутренним касанием. Центр дуги сопряжения О1 находится на пересечении вспомогательной прямой, проведенной параллельно данной прямой на расстоянии r, с дугой вспомогательной окружности, описанной из центра О радиусом, равным разности R—r. Точка сопряжения является основанием перпендикуляра, опущенного из точки О1 на данную прямую. Точку сопряжения с находят на пересечении прямой ОО1 с сопрягаемой дугой. Такое сопряжение выполняют, например, при вычерчивании контура маховика, показанного на рис. 63, г.
СОПРЯЖЕНИЕ ДУГИ С ДУГОЙ
Сопряжение двух дуг окружностей может быть внутренним, внешним и смешанным.
При внутреннем сопряжении центры O и O1 сопрягаемых дуг находятся внутри сопрягающей дуги радиуса R (рис. 64, б).
При внешнем сопряжении центры и сопрягаемых дуг радиусов R1 и R2 находятся вне сопрягающей дуги радиуса R (рис. 64, в).
При смешанном сопряжении центр О, одной из сопрягаемых дуг лежит внутри сопрягающей дуги
радиуса R, а центр О другой сопрягаемой дуги вне ее (рис. 65, а).
На рис. 64, а показана деталь (серьга), при вычерчивании которой необходимо построение внутреннего и внешнего сопряжения.
Построение внутреннего сопряжения.
а) радиусы сопрягаемых окружностей R1 и R2
б) расстояния l1 и l2 между центрами этих дуг;
в) радиус R сопрягающей дуги.
а) определить положение центра 02 сопрягающей дуги;
б) найти точки сопряжения s1 и s
в) провести дугу сопряжения.
Построение сопряжения показано на рис. 64, б. По заданным расстояниям между центрами 11 и l2 на чертеже намечают центры О и O1 из которых описывают сопрягаемые дуги радиусов R1 и R2. Из центра О1 проводят вспомогательную дугу окружности радиусом, равным разности радиусов сопрягающей дуги R и сопрягаемой R2, а из центра О — радиусом, равным разности радиусов сопрягающей дуги R и сопрягаемой R1 Вспомогательные дуги пересекутся в точке 02 которая и будет искомым центром сопрягающей дуги.
Для нахождения точек сопряжения точку 02 соединяют с точками О и О1 прямыми линиями. Точки пересечения продолжения прямых 020 и 020 с сопрягаемыми дугами являются искомыми точками сопряжения (точки S и s1).
Радиусом R из центра Ог проводят сопрягающую дугу между точками сопряжения s и s1
Построение внешнего сопряжения.
б) расстояния и l2 между центрами этих дуг;
в) радиус R сопрягающей дуги.
а) определить положение центра 02 сопрягающей дуги;
б) найти точки сопряжения и s1;
в) провести дугу сопряжения.
Построение внешнего сопряжения показано на рис. 64, в. По заданным расстояниям между центрами l1 и l2 на чертеже находят точки О и О1 из которых описывают сопрягаемые дуги радиусов R1 и R2. Из центра О проводят вспомогательную дугу окружности радиусом, равным сумме радиусов сопрягаемой дуги R1, и сопрягающей R, а из центра О1 — радиусом, равным сумме
радиусов сопрягаемой дуги R2 и сопрягающей R. Вспомогательные дуги пересекутся в точке O2, которая будет искомым центром сопрягающей дуги Для нахождения точек сопряжения центры дуг сое-
диняют прямыми линиями 002 и 0102. Эти две прямые пересекают сопрягаемые дуги в точках сопряжения S и s1
Из центра 02 радиусом R проводят сопрягающую дугу, ограничивая ее точками сопряжения и
Построение смешанного сопряжения. Пример смешанного сопряжения приведен на рис. 65, и где изображены кронштейн и его чертеж.
б) расстояния l1 и l2 между центрами этих дуг;
в) радиус R сопрягающей дуги.
а) определить положение центра 02 сопрягающей дуги;
б) найти точки сопряжения s и s1
в) провести дугу сопряжения.
По заданным расстояниям между центрами l1 и l2 на чертеже намечают центры 0 и 01, из которых описывают сопрягаемые дуги радиусов R1 и R2. Из центра О проводят вспомогательную дугу окружности радиусом, равным сумме радиусов сопрягаемой дуги R1 и сопрягающей R, а из центра 01 — радиусом, равным разности радиусов R и R2. Вспомогательные дуги пересекутся в точке 02, которая будет искомым центром сопрягающей дуги.
Соединив точки О и 02 прямой, получают точку сопряжения соединив точки О1 и 02, находят точку сопряжения s. Из центра 02 проводят дугу сопряжения от s до s1
При вычерчивании контура детали необходимо разобраться, где имеются плавные переходы, и представить себе, где надо выполнить те или иные виды сопряжения.
Для приобретения навыков построения сопряжения выполняют упражнения по вычерчиванию контуров сложных деталей. Перед упражнением необходимо просмотреть задание, наметить порядок построения сопряжений и только после этого приступить к выполнению построений.
На рис. 66, а изображена деталь (кронштейн), а на рис. 66, б, в, г показана последовательность выполнения контурного очертания этой детали с построением различных видов сопряжений.
Источник